Convex Image Segmentation Model Based on Local and Global Intensity Fitting Energy and Split Bregman Method

نویسندگان

  • Yunyun Yang
  • Boying Wu
چکیده

We propose a convex image segmentation model in a variational level set formulation. Both the local information and the global information are taken into consideration to get better segmentation results.We first propose a globally convex energy functional to combine the local and global intensity fitting terms. The proposed energy functional is then modified by adding an edge detector to force the active contour to the boundary more easily. We then apply the split Bregman method to minimize the proposed energy functional efficiently. By using a weight function that varies with location of the image, the proposed model can balance the weights between the local and global fitting terms dynamically. We have applied the proposed model to synthetic and real images with desirable results. Comparison with other models also demonstrates the accuracy and superiority of the proposed model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global-Statistics-Based Active Contour Model for Image Segmentation

This paper presents a localand global-statistics-based active contour model for image segmentation by applying the globally convex segmentation method. We first propose a convex energy functional with a local-Gaussian-distribution-fitting termwith spatially varyingmeans and variances and an auxiliary global-intensity-fitting term. A weight function that varies dynamically with the location of t...

متن کامل

A Fast Global Minimization of Region-Scalable Fitting Model for Medical Image Segmentation

Active contour model (ACM) which has been extensively studied recently is one of the most successful methods in image segmentation. The present paper advances an improved hybrid model based on RegionScalable Fitting Model by combining global convex segmentation method with edge detector operator. The proposed model not only inherits the ability of RSF model to deal with the images with intensit...

متن کامل

ناحیه‌بندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت

The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...

متن کامل

Active Contours Using Additive Local and Global Intensity Fitting Models for Intensity Inhomogeneous Image Segmentation

This paper introduces an improved region based active contour method with a level set formulation. The proposed energy functional integrates both local and global intensity fitting terms in an additive formulation. Local intensity fitting term influences local force to pull the contour and confine it to object boundaries. In turn, the global intensity fitting term drives the movement of contour...

متن کامل

New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation

We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012